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a b s t r a c t

We present the development, formulation, and performance of a new simulation tool for electrophoretic
preconcentration and separation processes such as capillary electrophoresis, isotachophoresis, and field
amplified sample stacking. The code solves the one-dimensional transient advection-diffusion equations
for multiple multivalent weak electrolytes (including ampholytes) and includes a model for pressure-
driven flow and Taylor–Aris dispersion. The code uses a new approach for the discretization of the
eywords:
lectrophoresis
sotachophoresis
imulation
ispersion

equations, consisting of a high resolution compact scheme which is combined with an adaptive grid
algorithm. We show that this combination allows for accurate resolution of sharp concentration gradi-
ents at high electric fields, while at the same time significantly reducing the computational time. We
demonstrate smooth, stable, and accurate solutions at current densities as high as 5000 A/m2 using only
300 grid points, and a 75-fold reduction in computational time compared with equivalent uniform grid

vailab
igh resolution
daptive grid

techniques. The code is a

. Introduction

Electrophoretic preconcentration and separation techniques are
ell established and widely used in a variety of fields, includ-

ng chemistry, biochemistry, pharmacology and genetics [1,2].
he interest in and utility of these techniques is evident from
he large number of associated publications, now exceeding one
aper per hour.1 In concert with experiments, computer simu-

ations offer a strong research tool for elucidating fundamental
rocesses ruling the dynamics of electrokinetic separation and
reconcentration methods. Such tools also offer the potential of
reatly reducing experimental time and achievement of assays
ith optimal resolution and sensitivity. Despite significant progress

n computational techniques, there remain many electrokinetic
ow problems outside the capabilities of existing codes. This is
specially true of electrophoresis processes involving high electric

elds and ion density gradients and their coupling with chemical
eactions. Examples of challenging electrokinetic problems include
he effects of electromigration dispersion on capillary zone elec-
rophoresis injections [4]; field amplified sample stacking (FASS)

∗ Corresponding author.
E-mail address: juan.santiago@stanford.edu (J.G. Santiago).

1 In 2007, 13,560 publications in the search topic “electrophoresis”, refined by
ategory “science and technology” and document type as “article” according to the
SI Web of Science search engine, www.isiknowledge.com [3].

021-9673/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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with strong concentration gradients [5,6]; and isotachophoresis
(ITP) assays with strong mobility differences and high current den-
sities [7,8].

In 1986, Saville and Palusinski [9] formulated a convenient
set of conservation equations for electrophoretic transport includ-
ing multiple species in equilibrium with protons (for monovalent
species only but including ampholytes). With some modifications
and expansions on the work, the approach remains the standard
method for formulating the dynamics of electrophoresis. The work
by Bier et al. [10] in 1983 was the first published implementation
of an electrophoresis code with this approach. A later publication
in 1986 [11] presented the details of the numerical method. In
addition to the discretized formulation of equation, it provided a
time step stability criterion and an algebraic equation for equi-
librium reactions. While the simulation showed good agreement
with experiments and allowed new insight into physical mecha-
nisms [12], it was limited, at that time, by numerical stability and
resolution constraints to current densities of the order 40 A/m2.
Higher electric fields resulted in significant spurious oscillations,
or required a large number of grid points leading to unaccept-
ably long computational times. To reduce computation cost, Dose
and Guiochon [13] proposed in 1991 a column segmentation algo-

rithm in which computations were performed only in active regions
of the domain where the derivatives are non-zero. While report-
ing significant improvement in computational time, the authors
pointed out the complexity of the algorithm’s book-keeping and
the remaining difficulty in a priori choice of grid spacing. Ermakov

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
http://microfluidics.stanford.edu/
mailto:juan.santiago@stanford.edu
http://www.isiknowledge.com/
dx.doi.org/10.1016/j.chroma.2008.12.022


M. Bercovici et al. / J. Chromatogr. A 1216 (2009) 1008–1018 1009

Table 1
Summary of the evolution of numerical codes for generalized electrokinetic transport. Emphasized are approaches taken toward handling high current densities (and
associated high concentration and field gradients) and reducing computational time.

Authors Year Numerical scheme Primary contribution(s)a

Bier et al. [10] 1983 Second order centered First implementation of the electrophoretic code described in [9]
Saville and Palusinksi [9] 1986 Not applicable Formulation of governing equations for multiple species including monovalent

equilibria with protons

Palusinski et al. [11] 1986 Second order centered Time step stability condition
Algebraic equilibrium equations for monovalent ampholytes
Demonstrated current densities of order 10 A/m2

Mosher et al. [12] 1989 Second order centered Model for protein mobility

Dose and Guiochon [13] 1991 Second order centered with column
segmentation

Column segmentation
Grid size condition for non-oscillatory solutions

Ermakov et al. [14] 1994 Second order centered with artificial
dispersion

Higher resolution by use of artificial dispersion
Demonstrated current densities of order 100 A/m2

Mosher et al. [20] 1995 Second order centered Model for electroosmotic flow

Martens et al. [15] 1997 Upwind with implicit time step Demonstrated current densities of order 1000 A/m2

Numerical dissipation leads to increased interface widths

Ikuta and Hirokawa [16] 1998 Shifted upwinding Demonstrated current densities of order 1000 A/m2

Numerical dissipation leads to increased interface widths

Sounart and Baygents [17] 2000 Flux-corrected transport (flux limiter) Demonstrated current densities of order 1000 A/m2

Reduced numerical dissipation
Improved representation of interface widths

Breadmore et al. [19] 2006 Second order centered Demonstrated current densities of order 10,000 A/m2 using large grids

Hruska et al. [32] 2006 Second order centered Accounts for ionic strength in activity coefficients and electric mobility
Treatment of multivalent ampholytes
Includes large database of analytes
Free simulator available online

Yu et al. [18] 2008 Second order CESE Demonstrated current densities of order 1000 A/m2

Reduced numerical dissipation
Improved representation of interface widths

Current work 2008 Sixth order compact scheme High resolution, sixth order scheme
Adaptive grid Adaptive grid

Reduced computation time
Demonstrated current densities of order 1000 A/m2 with no numerical dissipation
(accurate representation of sharp interfaces)
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a Ionic current densities listed here are those reported in the original publicat
ignificantly higher current densities on modern computers.

t al. [14], in 1994, were perhaps the first to recognize the impor-
ance of spatial discretization in reducing spurious oscillations.
hey achieved higher resolution by use of numerical dispersion and
eported smooth solutions up to 100 A/m2. While showing signifi-
ant improvement over previous schemes, the limitation on electric
eld with the computers available at the time was still an order of
agnitude lower than current densities used in the laboratory. In

997, Martens et al. [15] and later Ikuta and Hirokawa [16] took
different approach by implementing upwind discretization. This
pwinding allowed smooth solutions at current densities as high
s 2200 A/m2, but at the expense of introducing non-physical dis-
ipation; this resulted in overly diffused (e.g., wider than known
alues from simple cases which are analytically solvable as will
e discussed below) concentration interfaces. Significant improve-
ents in the dissipative approach were offered by Sounart and

aygents [17] who proposed a flux-corrected transport method
n which numerical dissipation is limited to grid points where
t is required. Interface widths obtained with this method were
ignificantly lower and closer to expected values, compared with
pwind schemes. However, to achieve negligible numerical dis-
ipation, the number of grid points (and thus the computational

ime) required by the flux-corrected transport method becomes
quivalent to that required by second order centered schemes.
ecently, Yu et al. [18] presented the use of the space-time conser-
ation element and solution element (CESE) method for simulation
Open source code

lder numerical schemes listed are, of course, expected to allow the solution of

of electrophoresis problems at high current densities. Similar to
the work by Sounart and Baygents, CESE offers limited numerical
dissipation thereby improving the accuracy at interfaces com-
pared with upwind schemes. With the improvement in computer
power in both CPU speed and memory, larger grids with smaller
grid spacing could be used. This enabled higher current density
simulations to be obtained, using even the original second order
centered scheme by Bier et al. [10]. Breadmore et al. [19], for exam-
ple, reported in 2006 electrophoresis simulations using current
densities higher than 20,000 A/m2. However, further reduction in
computational time is still much desirable to allow for the anal-
ysis of complex, high current density problems used regularly by
experimentalists, and to allow for the construction of efficient opti-
mization tools. While not intended to serve as a complete review
of the field, Table 1 summarizes the evolution of electrophore-
sis solvers and highlights some of the primary contributions to
electrophoretic simulations, with an emphasis on the numerical
schemes used.

In the current work, we propose a new approach for spatial dis-
cretization of electrokinetic problems which achieves both high
accuracy and low computational cost. As mentioned above, precise

resolution of interface widths can be crucial for accurate simula-
tion of modern applications. We therefore employed a sixth order
compact scheme which is non-dissipative. More important than its
high order is the high resolution of the scheme, allowing for the
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Fig. 1. Schematic illustration of an isotachophoresis process and physical mech-
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nisms included in the current code. The code is a general solver for nonlinear
lectrophoresis of multiple, multivalent species. The code uses a high resolution
daptive grid scheme for reduced computational cost; this and a Taylor–Aris type
ispersion model are unique to the code.

esolution of high wave numbers with fewer grid points. To further
educe the computational cost, and to provide a solution method
hich does not require an a priori choice of grid spacing, we devel-

ped an adaptive grid algorithm. The adaptive grid continuously
aries the spacing of and clusters grid points in regions of high
radients, thereby reducing the possibility of numerical instability
nd oscillations. We achieve smooth and stable solutions at cur-
ent densities as high as 5000 A/m2 using a number of grid points
0 times smaller than equivalent uniform grids which achieve the
ame resolution. We thereby reduce computational time by a factor
f 75.

The physical modules implemented in our code include treat-
ent of multi-species, multivalent equilibrium reactions (including
ultivalent ampholytes), non-uniform electroosmotic flow (see for

xample Mosher et al. [20], and Thormann et al. [21]), and pressure-
riven flow. The latter are key to determining ion density gradients

n electrokinetic flows with heterogeneous electrolytes [6,22]. For
he first time, we include a Taylor–Aris dispersion [23–27] formu-
ation with a multi-species, heterogeneous electrolyte flow solver.
he main physical formulations (modules) included in the code are
ummarized in Fig. 1. The code also includes a graphical user inter-
ace and a database of over 300 analytes, based largely on the tables
y Hirokawa et al. [28–31]. Currently, the code does not account
or changes in reactivity and mobility due to ionic strength; but
hese important mechanisms will be incorporated in near-future
mprovements. While the code constitutes a rather general tool for
E, FASS, and ITP, among other assays, modern applications of elec-
rophoretic simulations are wide and diverse and no single code
an offer an answer to all applications. We therefore also offer the

ode as an open source, written in Matlab (The Mathworks, Nat-
ck, MA, USA). Our open source allows researchers to modify, add,
emove, embed, or link part or all of the codes with additional com-
onents and other programs. The code is available for download at
ttp://microfluidics.stanford.edu.
. A 1216 (2009) 1008–1018

2. Conservation laws and governing equations

2.1. Equilibrium reactions

As noted by Saville and Palusinski [9], the kinetic rates for
acid–base type reactions are typically slow compared with advec-
tion and diffusion rates in the system. We here adopt this approach
and consider a system of analytes and buffer ions always in (pro-
ton and hydroxyl dissociation) chemical equilibrium throughout
the channel. This approach allows much larger time steps to be
used in the simulation, compared with those required to describe
reaction kinetics. While we find that the vast majority of phenom-
ena can be described with this simplification, slow reaction kinetics
may in some cases have an important effect on separation assays,
as shown by Gebauer and Bocek [33] and more recently by Khurana
and Santiago [34].

Following the notation of Stedry et al. [35], the total concentra-
tion (i.e., analytical concentration) of a general ampholytes family
i is given by

ci =
pi∑

z=ni

ci,z, i = 1 . . . N (1)

where ci,z is the concentration of an ionic state of valence z belong-
ing to the family i. We here define a “family” as all ionization states
of a specie which associate or dissociate one or more protons (e.g.,
for histidine, the +2, +1, neutral, and −1 forms all constitute one
family). ni and pi are the minimum and maximum valences of that
family (respectively −1 and +2 for the histidine example), and N
is the total number of specie families. The reaction between any
two consecutive ionic states within one family are defined by an
equilibrium coefficient of the form

Ki,z = ci,zcH

ci,z+1
, (2)

where cH denotes the concentration of hydronium ions, H+. As
shown by Stedry et al. [35], using Eq. (2) the concentration of each
ionic state can be related to the concentration of the neutral state,
ci,0, and the hydronium concentration, cH, by

ci,z = ci,0Li,zcz
H z = ni . . . pi (3)

where

Li,z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1∏
z′=z

Ki,z′ z < 0

1 z = 0
z−1∏
z′=0

K−1
i,z′ z > 0

(4)

Substituting Eq. (3) into Eq. (1) yields an important result relat-
ing the concentration of each ionic state within a family to the total
concentration of that family

ci,z = ci
Li,zcz

H∑pi
z=ni

Li,zcz
H

(5)

As discussed by Newman and Thomas-Alyea [36] and adapted
for this case by Saville and Palusinski [9], the characteristic
diffusion-advection length scales in the problem are significantly
larger than the electric length scale (Debye length), justifying the
use of the electroneutrality assumption. Using the notation above,

this is explicitly expressed as

N∑
i=1

pi∑
z=ni

zci,z + cH − cOH = 0, (6)

http://microfluidics.stanford.edu/
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here cOH is the concentration of hydroxyl. Using the equilib-
ium equation for water, cOHcH = KW, an algebraic equation for cH
s obtained
N

i=1

ci

pi∑
z=ni

zLi,zcz
H∑pi

z′=ni
Li,zcz′

H

+ cH − KW

cH
= 0. (7)

ere the total concentrations ci are assumed to be known, as well
s all the properties of the different species Li,z. This equation is
ypically solved iteratively for each time step and each grid point in
he simulation. Additional simplification of Eq. (7) is given in [37],
here we derive a simple, more convenient polynomial form which

an be written as
N

i=1

ciPi + Q = 0, (8)

here

Q = (x2 − KW )
N∏

j=1

⎛
⎝ pi∑

z′=ni

Lj,z′ xz′−nj

⎞
⎠

Pi = cH

N∏
j=1

⎛
⎝

pj∑
z′=nj

Li,z′ (1 + (z′ − 1)ıij)x
z′−nj

⎞
⎠

. (9)

While the expressions for Pi and Q appear complex, they merely
epresent the coefficients of a polynomial, using the known quanti-
ies Li,z. An important property of this new form of the net neutrality
onstraint problem is that the polynomials coefficients Pi and Q
eed to be calculated only for the first time step of the simulation,
nd these then hold for all spatial locations and subsequent times.
nly the concentrations ci change in time and space, as described

n the next section. Other properties of this form, such as direct
olution of the polynomial are discussed in [37].

.2. Advection-diffusion equations

Following a derivation approach similar to that of Saville and
alusinski [9], we start from a set of area-averaged advection-
iffusion equations for each ionic state within each family,

∂ci,z

∂t
= ∂

∂x

[(
�i,z

∂�

∂x
− u

)
ci,z + Di,z

∂ci,z

∂x

]
+ Ri,z, i = 1 . . . N,

z = ni . . . pi (10)

ere �i,z is the ionic mobility, Di,z is the molecular diffusivity, �
s the electric potential, u is the advective velocity, and Ri,z is the
roduction rate. Since the net rate of production of the elementary
pecies is zero (Saville and Palusinski [9]), summing Eq. (10) over all
alences yields an equation which is independent of the production
ates Ri,z,

∂ci

∂t
= ∂

∂x

[
∂ (Dici)

∂x
+ �i

∂�

∂x
ci − uci

]
i = 1 . . . N, (11)

here

i =
pi∑

z=ni

�i,zgi,z, Di =
pi∑

z=ni

Di,zgi,z (12)

nd
i,z = Li,zcz
H∑pi

z=ni
Li,zcz

H

. (13)

Chemical equilibrium is accounted for through the effective
obility, �i, and effective diffusivity Di, which depend on local
. A 1216 (2009) 1008–1018 1011

pH through the function gi,z. The formulation above is our gener-
alization of the formulation provided by Martens et al. [15]. The
new, current formulation accounts for differences in diffusivity
(if known) across ionic states, and provides a simplified, explicit
expression for the degree of dissociation gi,z. We note our formu-
lation is therefore significantly different from that of Saville and
Palusinski [9]. Most notably, the flux terms on the right hand side of
Eq. (11) depend explicitly on the total concentration ci, as opposed
to a dependency on the individual ci,z. Our approach has several
advantages. First, it allows a clear definition of the effective mobil-
ity and diffusivity as a function of pH for the case of multivalent
species. Second, it reduces the computational cost associated with
multi-stage time integrators (such as the Runge-Kutta integrator,
used in the this work): If the pH is assumed constant within each
time step, the chemical equilibrium and resulting effective mobil-
ity can be calculated for the first stage of each time step, and then
fixed for subsequent stages within the that time step. Thus values
of ci are updated several times during one time step, while �i and
Di are updated only once per time step. Sounart and Baygents [17]
presented an alternative formulation that depends explicitly on the
total concentration. However, their expressions of effective diffusiv-
ity contain the total concentration in the denominator, which may
lead to singularity in regions where these concentrations vanish.

In Eq. (11), Di can be regarded as the molecular diffusivity of
the total concentration of specie i, ci. This allows us to leverage
an approximation of dispersion effects via a Taylor–Aris dispersion
coefficient of the form

Deff
i

= Di[1 + ˇ Pe2], (14)

where Pe = Ud/Di is the Peclet number based on the dispersion
velocity, U (the area-averaged velocity scale associated with inter-
nal pressure gradients), and the characteristic dimension of the
channel cross section, d. ˇ is a constant that depends on the
shape cross section and can be calculated for arbitrary shapes (e.g.,
ˇ = 1/192 for a circular cross section with diameter d), as shown by
Dutta et al. [38]. We account for dispersion due to both externally
imposed pressure gradients and internal pressure gradients aris-
ing from non-uniform electroosmotic flow (EOF). The dispersion
velocity can be expressed as

U = d2

b�

�P

L
+ (uEOF − uEOF ), (15)

where �P is the external pressure gradient, L is the length of the
channel, � is the kinematic viscosity, and b is a constant deter-
mined by the shape of the cross section (b = 32 for a circular
cross section). uEOF is the local electroosmotic velocity, and uEOF =
(1/L)

∫ L

0
uEOF (x) dx is the axial-dimension averaged electroosmotic

velocity in the channel. This assumes that internal pressure and
electric field gradients vary only slowly along the channel axis [27].
This is certainly accurate for cases where electroosmotic flow is
strongly suppressed and external pressure gradients are applied to
the capillary (as we discuss in Section 4.4). In a future paper we will
address the complex problem of dispersion in ITP regions with very
high (fully three-dimensional) velocity gradients.

The electroosmotic velocity is currently based on the model by
Mosher et al. [20] and does not take into account ionic strength
effects as described by Thormann et al. [21]. At any location along
the channel, the local electroosmotic mobility is calculated using
the expression
�EOF = gEOF �0
EOF + (1 − gEOF )�c

EOF , (16)

where �0
EOF and �c

EOF are experimentally determined electroos-
motic flow mobilities at two extreme pH conditions. gEOF is the
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issociation level of the wall given by

EOF = 10pH−pKaW

1 + 10pH−pKaW
, (17)

here pKaW is the (experimentally determined) equilibrium con-
tant of the wall. The local electroosmotic velocity is then given
imply by the product of the local EOF mobility and the local electric
eld, �EOF = �EOF(d�/dx).

The advection-diffusion Eqs. (11) are coupled through the elec-
ric field d�/dx. An equation for the field can be derived by invoking
urrent conservation, while accounting for both electromigration
nd diffusion currents. Advection currents are assumed negligible
ere. For a constant current density j, the electric field is given by

∂�

∂x
= − 1

�

(
j + ∂S

∂x

)
, (18)

here the conductivity and diffusive current are again expressed
xplicitly as a function of the total concentration and the local pH:

� =
N∑

i=1

ci˛i, ˛i =
pi∑

z=ni

gi,z�i,zFz

S =
N∑

i=1

ciˇi, ˇi =
pi∑

z=ni

gi,zDi,zFz.

(19)

. Numerical method

.1. Spatial discretization

The majority of the numerical research in electrophoretic trans-
ort has been focused on dealing with numerical oscillations which
rise from steep concentration gradients at high electric fields
13–18]. There have been two main approaches for dealing with
his: non-dissipative and dissipative schemes. The non-dissipative
pproach uses a centered discretization for the spatial derivatives.
ose and Guiochon [13] showed that, for a second order centered

cheme, the solution is guaranteed to be non-oscillatory if the Peclet
umber based on the grid size, Pe�x = u�x/D, satisfies Pe�x < 2. Here
is total advection velocity, D is the diffusivity, and �x is the

rid spacing. As the electric field increases, smaller grid spacing
s required to satisfy this requirement, leading to increased compu-
ational time.

The dissipative approach makes use of numerical dissipation
erms to filter high frequencies that result in oscillation. Perhaps the

ost common dissipative scheme is the first order upwind scheme
n which the first derivative of an arbitrary function f(x) is given by

df

dx
= fj − fj−1

�x
+ O(�x), (20)

here the mesh nodes are indexed by j and fj denotes f(j�x). This
an be alternatively expressed as

df

dx
= fj+1 − fj−1

2�x
− 1

2
�x

(
fj+1 − 2fj + fj−1

�x2

)
. (21)

The first term in Eq. (21) is a centered second order first deriva-
ive. The second term is the numerical dissipation term which has
he form of a second order second derivative with a �x/2 coeffi-
ient. This can be regarded as a diffusion term with a coefficient
hat depends on the grid spacing. This approach is attractive since

non-oscillatory solution is guaranteed, irrespective of the chosen
rid spacing (the larger the grid spacing, the larger the numerical
iffusion coefficient). However, in cases where the exact shape of
oncentration gradients is of interest, such as in ITP simulations,
issipative solutions are unsatisfying as they result in non-physical
. A 1216 (2009) 1008–1018

(overly wide) concentration gradients. Although numerical dissi-
pation can be reduced by decreasing the cell size, it will be small
compared with molecular diffusion only when (1/2)�x < D/u; pre-
cisely the requirement for the second order centered scheme to be
non-oscillatory. Hence, for accurate solutions, dissipative schemes
offer no benefit (we note that dissipative schemes may be useful
for rough-yet-quick estimates). A comparison between an upwind
and centered scheme for a realistic ITP case is provided in Section
4.1.

In the present work we adopt the non-dissipative approach, yet
aim to avoid numerical oscillations and reduce computational time.
For any discrete grid, there exists a maximum wave number (spa-
tial frequency), k, that can be accurately represented on that grid.
The Nyquist criterion sets an upper bound on this wave number,
k�x < �, where �x is the grid spacing. If we regard the concentra-
tion distribution as a Fourier series consisting of waves at varying
frequencies, then sharper gradients require higher wave numbers.
For a fixed �x, this obviously sets a limit on the maximum gradient
that can be described. However, expressing derivatives on a dis-
crete grid sets more restrictive limitations. As shown in the Fourier
analysis by Lele [39], derivative operations result in dispersion of
high wave numbers; i.e., these waves travel at a range of frequency-
dependent velocities. This results in oscillations, since the different
waves no longer combine to give the correct concentration pro-
file. The spatial resolution of a scheme is determined by the range
of wave numbers it can accurately resolve for a given grid. In this
work, we use the sixth order tridiagonal compact scheme [18]. This
scheme, while non-dissipative, has a much higher resolution com-
pared to a second order scheme. For example, for the first derivative,
the sixth order scheme resolves 70, 50 and 35% of the wave numbers
to an accuracy of 10, 1 and 0.1%, respectively. This is compared to the
standard second order centered scheme with resolving efficiencies
of only 25, 8 and 2% of the wave numbers for the same accuracies.

In the compact scheme approximation, the finite difference
approximation f ′

j
depends not only on the function values at

surrounding nodes, but also on the derivative approximations at
the neighboring nodes. This results in an implicit expression for
derivatives. For the sixth order scheme employed here, the relation
for the first derivative takes the form

1
3

f ′
j−1 + f ′

j + 1
3

f ′
j+1 = 1

9
fj+2 − fj−2

4�x
+ 14

9
fj+1 − fj−1

2�x
. (22)

Similarly, for the second derivative

2
11

f ′′
j−1 + f ′′

j + 2
11

f ′′
j+1 = 3

11
fj+2 − 2fj + fj−2

4�x2
+ 12

11
fj+1 − 2fj + fj−1

�x2
.

(23)

When written for all grid points, these expressions result in tridiag-
onal systems which are solved at each time step. Additional infor-
mation regarding the use of this compact scheme, its resolution and
the corresponding boundary conditions can be found in [37].

3.2. Adaptive grid

To reduce the computational time of the code, while maintain-
ing an accurate and non-oscillatory solution, we have developed
an adaptive grid procedure. Given a fixed number of grid points in
the domain, the adaptive procedure clusters grid point at regions of
high gradient, at the expense of lower gradient regions. This method
appears to be very well suited to CE and ITP type applications, where
a considerable fraction of the channel remains largely undisturbed,

while small, important regions experience high, propagating gra-
dients.

The construction of the adaptive grid consists of two stages. In
the first step, we formulate the finite difference derivatives on a
general non-uniform grid. Second, we derive an equation which
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overns the location of the grid points at all times. These steps are
escribed further below.

We express the finite difference derivatives on the (physical)
on-uniform grid in terms of a computational uniform grid. One
ay of achieving this is by defining a mapping function from the
hysical domain, which may have a non-uniform grid, to a com-
utational domain which has a uniform grid (Spotz and Carey
40]). This mapping is defined as x = x(z), where x is the physical
omain and z is the computational domain. All spatial derivatives
an now be recast as a function of z using the chain rule. For example
f/dx = (df/dz)(dz/dx), or in short notation fx = fzzx = fz/xz. The deriva-
ives fz and xz are with respect to the uniform grid z and therefore
an be calculated using operation (22). Applying this procedure to
q. (11) results in modified governing equations, expressed on the
omputational domain z, in which the coefficients of the different
uxes depend on the local grid density xz

∂ci

∂t
= 1

x2
z

[
∂2(ciDi)

∂z2
− ∂(ciDi)

∂z

xzz

xz
+ �ici

(
∂2�

∂z2
− xzz

xz

∂�

∂z

)

+∂(�ici)
∂z

∂�

∂z

]
+ (xt − u)

∂ci

∂z

1
xz

, (24)

ith

∂�

∂z
= − 1

�

(
jxz + ∂S

∂z

)
(25)

nd

∂2�

∂z2
− xzz

xz

∂�

∂z

)
= − 1

�

(
∂2S

∂z2
− ∂S

∂z

xzz

xz
+ ∂�

∂z

∂�

∂z

)
. (26)

To close the system, the mapping x = x(z) has to be determined at
ach time step. To achieve this, we define an optimization problem
n which the cost function takes maximum values at regions of high
radients. As shown in [37], the optimization problem can be recast
s an additional PDE which governs the evolution of the mapping
unction x(z),

∂x

∂t
= −	s(z), (27)

here 	 is a constant effecting the speed of propagation of the
rid, and s(z) is a smoothed form of the governing cost function, as
escribed in [37]. This equation is solved coupled with the electro-
igration equations. Since regions of high gradients continuously
igrate along the channel, the mapping function never reaches a

teady state and areas of large grid density instead propagate with
nd accompany regions of high gradients.

.3. Time discretization and simulation procedure

The code presented here is designed primarily to assist in the
esign and optimization of electrophoretic assays. For example, in
E, injection protocols, buffer selection, and detector placement
ave been shown to strongly influence resolution (Gas et al. [4],
haradwaj et al. [41]); and in ITP the choice of electrolytes and
lectric field has been shown to play a key role in the stacking rate
nd maximum intensity of analytes (Enlund et al. [7] and Khurana
nd Santiago [22]). Accurate transient representation is essential in
ccommodating these needs.

Due to the coupled nature of the advection-diffusion equations,
t is difficult to a priori determine a stable time step for the entire

imulation. Furthermore, the adaptive time procedure may signif-
cantly alter the grid spacing during the simulation which directly
ffects the allowed time step. Automatic time step control has
een therefore utilized in several previous publications. For exam-
le, Palusinski and coworkers [10] used the Runge-Kutta-Merson
. A 1216 (2009) 1008–1018 1013

and Ruge-Kutta-Fehlberg schemes, whereas Hruska et al. [32] used
the Hamming predictor corrector scheme. In the current work,
we adapted both the third order Runge-Kutta-Bogacki-Shampine
(RK23) method and the fifth order Runge-Kutta-Dormand-Prince
(RK45) method in the Matlab ODE suite [42]. These methods use
two sequential Runge-Kutta orders to estimate the truncation error,
and adjust the time step accordingly. The RK45 scheme is of higher
order and allows for slightly larger time steps compared with the
RK23 scheme. However, the latter requires less computational steps
and was found to be faster, with negligible influence on accuracy.
The RK23 method was therefore used for all simulations presented
in this work. The simulation sequence can be summarized as fol-
lows:

(1) An initial distribution of total concentrations is defined by the
user for all species along the channel.

(2) The initial grid distribution is automatically set to a uniform cell
size.

(3) Net neutrality is satisfied by determining the local pH using the
equilibrium Eq. (8).

(4) Using the obtained pH values, the effective mobility, effective
diffusivity and electric conductivity are calculated for all species
at all grid points using Eqs. (12) and (19).

(5) The cost function for the adaptive grid is calculated, and the
right hand side of Eq. (27) is determined.

(6) All spatial derivatives required for the right hand side of the
advection-diffusion Eq. (24) are calculated using the finite
difference formulas Eqs. (22) and (23). Note that the time
derivative of the grid mapping xt (obtained in the previous step)
is also required here.

(7) The governing equations for the species concentrations and the
adaptive grid equations are integrated using the Runge Kutta
integrator. The error norm is calculated, and this step is repeated
until this norm meets a user specified tolerance. If the norm is
significantly small compared to the tolerance, the time step is
increased.

(8) New total concentrations are updated, and the process repeats
from step three.

4. Results and discussion

As noted in Section 1, the code was implemented in Matlab to
allow fast turn-around time in modifying, testing, and implemen-
tation of (new) physical modules, and to allow other researchers
to modify it more conveniently. The results presented here were
obtained using an un-complied version of the code under Matlab
release version R2007b on a 32 bit Windows XP operating system.
An Intel Core 2 Duo 2.0 GHz T7300 CPU with 2 GB of RAM was used
as the computing platform (using only one of the cores). The com-
putation times presented here should therefore only be used as a
relative comparison among various schemes; since implementation
in lower-level languages such as Fortran or C would significantly
reduce the computational time associated with each.

4.1. Prediction of zone boundary thickness

We first investigate the influence of computational accuracy on
zone boundary thickness in an example ITP assay. The mobility
markers technique recently developed by Khurana and Santiago
[44] leverages ITP for fluorescent detection of unlabeled analytes.

Low concentration fluorescent marker zones bound analyte zones,
so gaps in the fluorescent signal indicate the presence of ana-
lytes. A possible design goal for such assays is increasing their
sensitivity by decreasing the amount (or concentration) of sample
required for detection. In one of the experiments described in [44],
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Table 2
Equilibrium constants and corresponding valences, fully ionized electrophoretic mobilities (at negligible ionic strength), and initial concentrations for analytes and mobility
markers used in the numerical simulations of Fig. 2. Chemical properties for hydrochloric acid, Tris, acetic acid, fluorescein and 3-phenylpropionic acid are obtained from
Hirokawa et al. [29] and Paul et al. [45]. The properties for tetraphenylborate, Oregon Green carboxylic acid and Bodipy are estimated from our own experimental observations.

Name pKa Valences Mobility (×10−9 m2 V−1 s−1) Diffusivity (×10−10 m2/s) Initial concentration

Hydrochloric acid (LE) −2 −1, 0 −79.1 20.3 5 mM
Tetraphenylborate (TE) 5 −1, 0 −18 4.6 5 mM
Tris 8.076 0, +1 29.5 7.6 75 mM
Acetic acid (ACE) 4.756 −1, 0 −42.2 10.8 380 �M
3 .5
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-Phenylpropionic acid (PPA) 4.664 −1, 0 −26
regon Green carboxylic acid (M1) 4.7 −1, 0 −43
luorescein (M2) 6.7, 4.4 −2, −1, 0 −33
odipy (M3) 5 −1, 0 −20

he authors demonstrate the separation and detection of acetate
ACE) and phenylpropionate (PPA). We here simulate this sepa-
ation and detection using the same chemistry, but with a lower
nitial concentration of the analytes. The leading electrolyte (LE)
as composed of Tris–HCl and the terminating electrolyte (TE) was

ris–tetraphenylborate. A high TRIS concentration was used in both
ones to yield an initial pH of 9.2. In the simulation the pH of the
djusted TE (i.e., the TE occupying regions formerly occupied by
he LE) was 9.8. The chemical properties and initial concentrations
s used in the simulation are provided in Table 2. The values of
iffusivity here and throughout this work were calculated using
he Nernst–Einstein relation Di,z = R�T�i,z/F, where F is Faraday’s
onstant, R� is the universal gas constant, and T is the temperature.

The simulation was performed twice: using an upwind scheme
e.g., as used in previous studies [15,17]), and using our sixth order
ompact scheme. In both cases an adaptive grid with 150 nodes was

sed at a current density of 289 A/m2. The computational domain
as 6 mm in length, and the problem was, in both cases, solved in
frame of reference moving with the plug. The analytes and mark-
rs were introduced as 1 mm plugs at the center of the channel.

ig. 2. Simulation results of separation and detection of acetate (ACE) and phenyl-
ropionate (PPA) ions using three mobility markers. Chemical properties and initial
oncentrations used here are provided in Table 2. The left and right columns show
espectively results obtained using the upwind and high resolution schemes. (a and
) Concentration profiles of non-fluorescent analyte zones and of LE, TE zones. The
nalytes zones are in plateau mode when using the non-dissipative scheme, but
ncorrectly appear to be in peak mode using the upwind scheme. (c and d) Concen-
ration profiles of fluorescent mobility markers located at the interfaces between
nalytes. The marker species peaks are clearly resolved using the non-dissipative
cheme, but significantly overlap using the upwind scheme. Here M1: Oregon Green
arboxylic acid, M2: Fluorescein, and M3: Bodipy. (e and f) The fluorescent signal for
ach assay. Analyte zone signals are merged on the left, and resolved on the right
current scheme).
6.8 190 �M
11.0 1.9 �M

5 4.2 1.9 �M
5.1 1.9 �M

Fig. 2 presents the simulation results for both schemes. The diffused
boundaries obtained using the upwind scheme result in significant
overlap between the markers and in lower maximum concen-
trations. In contrast, the sixth order compact scheme accurately
resolves the interfaces showing three distinct marker peaks (below
we verify the current scheme’s accuracy by comparing it with a
well-established analytical solution). For a fluorescent intensity
proportional to the marker concentration, Fig. 2e and f represent the
resulting signal. The dissipative scheme results in (non-physical)
smearing of all three peaks, while our non-dissipative scheme
clearly captures each peak.

We verify the accuracy of our numerical scheme by comparing
to a simple test case where an analytical solution is available. In
their appendix, Saville and Palusinski [9] discuss a three species ITP
interface problem, where all species are fully ionized. The analytical
solution for the ratio of LE to TE concentration in this case takes the
form cLE/cTE = exp(−x/ı), where x is the axial coordinate and

ı = R�TzLE

(
�TE(�LE − �CI)

�LE − �TE

)
cLE

j
(28)

is the characteristic width of the interface. Here �LE, �TE and
� are the mobilities of the LE, TE and counter-ion, respectively
CI
(signed values). zLE is the valence of the LE, and j is the current
density. A plot of this analytical solution for interface width is
shown versus current density as the solid curve in Fig. 3. Results
from our code are shown as circles. For these numerical solutions,

Fig. 3. Verification of the code’s accuracy in resolving high gradient ITP interfaces.
The analytical solution (solid line, available for the special case of three fully ionized
species) is compared with numerical results (circles) obtained using the high resolu-
tion adaptive grid (HIRAG) with 100 grid points. HIRAG shows excellent agreement
for the entire range of current densities (higher current densities are easily achieved
using higher number of grid points). Results obtained using the upwind scheme, for
the same number of grid points, show significant deviation from analytical values,
even when combined with our adaptive grid.
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Fig. 4. The predicted thickness of the boundary between pyridine and aniline zones
in ITP for various relevant computational schemes as a function of the number of
grid points. Boundary thickness is defined here as the distance in which the concen-
tration changes from 1 to 99% of its plateau value. Results are for a current density
of 2260 A/m2. The DIME and UPWIND schemes are highly dissipative and the inter-
face width is grid-dependent even for a large number of grid points. The PLPE1 and

ple of an ITP interface between an LE and a TE. To study the effect
of the spatial discretization alone, the chemistry module is here
disabled, and fully ionized monovalent LE, TE and counter-ion are
used. The respective mobility values for these ions are −8 × 10−8,
−4 × 10−8 and +1 × 10−8 m2 V−1 s−1. Fig. 5 presents the simulation

Fig. 5. Predicted concentration profiles showing the effect of spatial discretization
and grid adaptation on the resolution of an ITP interface. N is the number of grid
M. Bercovici et al. / J. Chrom

he chemistry module was disabled and fully ionized mobilities of
60, −40 and +50 × 10−9 m2 V−1 s−1 were assigned to the LE, TE and

ounter-ion, respectively (the same values used for the analytical
xpression). The computational domain was a 10 mm long capil-
ary with a cross section diameter of 50 �m. 100 grid points were
sed to achieve a steady state solution by solving the problem in
frame of reference moving with the LE. Using the adaptive grid,

his number of grid points allowed smooth solutions with current
ensities up to 5000 A/m2. The solution at each current density was
nalyzed to extract the width of the interface. To be consistent with
q. (28) the width is defined as the distance between the spatial
oordinates corresponding to cLE = cTE and cLE/cTE = e−1. The numer-
cal results (circles) show excellent agreement with the analytical
olution (solid line).

For comparison, we also present in Fig. 3 numerical results
btained using the upwind (diffusive) scheme on both a uniform
rid (e.g., similar to previous work [15,16]) and a non-uniform grid
using our current adaptive mesh module). As expected, the upwind
cheme results in an overly diffused interface, with the uniform
rid solution showing a deviation of nearly an order of magnitude
rom the analytical results. Our adaptive grid reduces this error, but
he upwind still deviates significantly from the analytical curve at

id-range to high values of current density.
To test their numerical scheme, Ermakov et al. [14] defined sev-

ral test cases. One was a cationic ITP simulation consisting of two
nalyte zones focused between a LE and a TE. The same test case was
ater adopted by Martens et al. [15] to show the dependency of the
esulting boundary thickness on the choice of numerical scheme,
nd to test the stability of their algorithm at much higher current
ensities. Sounart and Baygents [17] again used this test case, at the
ame current density, to study the dependence of the zone bound-
ry thickness on grid spacing. Yu et al. [18] recently used the same
ase to study the performance of their CESE scheme.

We here examine the test case examined by Ermakov, Martens,
nd others and compare the zone boundary thickness to the num-
er of grid points used in the computational domain. These results
re presented in Fig. 4. The LE was 18 mM sodium hydroxide
� = 5.19 × 10−9 m2 V−1 s−1), the TE was 40 mM �-alanine (pKa = 3.3,

= 36 × 10−9 m2 V−1 s−1), and the background electrolyte was
0 mM acetic acid (pKa = 4.75, � = 4.24 × 10−9 m2 V−1 s−1). Ani-

ine (pKa = 4.8, � = 3.25 × 10−8 m2 V−1 s−1) and pyridine (pKa = 5.16,
= 3 × 10−8 m2 V−1 s−1) were introduced to the 40 mm long capil-

ary as 1 mm long plugs at a concentration of 10 mM. The data for
he UPWIND, PLPE1 and DIME schemes were digitized from Sounart
nd Baygents [17]. The data for the CESE scheme was obtained by
alculating the width of the plug in the time domain and multiply-
ng it by the ITP velocity [43]. The number of grid points used in
hose schemes was obtained by dividing the length of the channel
y the specified (uniform) grid spacing. The dissipative schemes are
haracterized by a strong dependence on the number of grid points
sed. A higher grid density reduces the numerical dissipation and

mproves the accuracy of results.
In contrast to the other schemes, our high resolution adaptive

rid (HIRAG) is non-dissipative so zone boundary is independent
f the number of grid points. As with all non-dissipative schemes,
ignificant numerical oscillations result if the grid density is not
ufficiently high. However, for the test case, the zone boundary
hickness was accurately resolved using the HIRAG scheme with
00 grid points, compared with more than 2500 required for the
LPE1 scheme. Further increase in the number of grid points did
ot change the HIRAG boundary thickness. Simulations using less

han ∼400 grid points resulted in discernible numerical oscillations
nd their results are not presented here.

Overall, these data highlight the importance of accurately resolv-
ng zone boundaries, and that non-dissipative schemes can provide
ccurate, grid-size-independent solutions.
CESE schemes exhibit reduced numerical dissipation and the PLPE1 scheme becomes
independent of the grid after about 2500 grid points. The HIRAG scheme is non-
dissipative and therefore, for non-oscillatory simulation conditions, is independent
of the grid size.

4.2. Computational time

Here, we illustrate how our high resolution sixth order com-
pact scheme combines with an adaptive grid (HIRAG) to reduce the
total computational cost. We again take the (challenging) exam-
points used. Results obtained after 100 s on a 20 mm long domain, under a cur-
rent density of 1800 A/m2. For clarity, we here zoom in on a 10 mm length which
captures the area of interest. (a) Explicit centered second order scheme using an
equally spaced grid. (b) Sixth order compact scheme using an equally spaced grid.
(c) Sixth order compact scheme using the adaptive grid procedure results in a smooth
interface, (d) even for one-third the number of grid points.
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Fig. 6. Speed ratio and grid size ratio associated with uniform and adaptive grid
simulations of a single-interface ITP experiment. LE is 100 mM hydrochloric acid,
TE is 50 mM HEPES, and counter-ion is 200 mM Tris. The channel is a 20 mm long
circular capillary with a 50 �m diameter. Simulation time varied depending on the
current density such that the distance traveled by the interface, t/� E , was con-
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tant. The curves are truncated at the maximum current resolvable by the 300 node
daptive grid. The inset shows the actual grid size used for the uniform grid (circles),
ompared to the constant 300 grid point value used by the HIRAG scheme (dashed
ine) to obtain the same resolution.

esults using two schemes. The second order scheme is unable to
esolve high wave numbers—resulting in significant oscillations.
sing the same uniform grid, the sixth order compact scheme

hows increased resolution and diminishes the magnitude and
xtent of oscillations. The sixth order scheme with an adaptive grid
hows that oscillations are here completely eliminated, even when
ne third of the grid points are used (cf. bottom two plots of Fig. 5).

Next, we quantitatively evaluate the reduction in computational
ost from using the adaptive grid. To this end, we compare the CPU
ime required to complete the same single-interface ITP simulation
ith and without the adaptive grid; and perform these compar-

sons as a function of applied current density. For each simulation,
e analyzed output files to extract the minimum grid spacing

maximum grid density, which this occurred always at the LE–TE
nterface). This minimum grid spacing was then used in a uniform
rid in a non-adaptive simulation; in this way, the interface resolu-
ion in both cases is approximately equal.

Fig. 6 presents both the grid size (number of grid points) ratio
nd the speed ratio as a function of current density. The speed ratio
s defined as CPU time for the uniform grid solution divided by that
f the adaptive grid solution. In both cases the sixth order com-
act scheme was used. As discussed by Saville and Palusinski [9],
he interface width (and hence the local gradients) is inversely pro-
ortional to current density, but also directly proportional to the
ifference in mobilities of the two neighboring species. As a suit-
ble, alternate-independent variable we therefore also show the
ssociated interface width in the top axis of the figure. The LE
as 100 mM hydrochloric acid (� = 7.9 × 10−8 m2 V−1 s−1), the TE
as 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HEPES) (pKa = 7.5, � = 2.35 × 10−8 m2 V−1 s−1), and the counter-ion
as 200 mM Tris (pKa = 8.076, � = 2.95 × 10−8 m2 V−1 s−1). We use

very practical range of current densities [44,33]. For example, a
0 �m circular channel containing a buffer system consisting of
2 mM Tris base and 20 mM acetic acid, would result in a cur-
ent density of ∼2500 A/m2 under a 300 V/cm electric field. Current
ensities as high as 15,000 A/m2 have been used in ITP [22].
. A 1216 (2009) 1008–1018

Both speed ratio and grid size ratio are roughly proportional
to current density as expected. At low to medium current densi-
ties, the speed ratio is slightly lower than the grid size ratio. We
attribute this to the additional computational time dedicated to
solving the adaptive grid equation. At current densities of approx-
imately 2500 A/m2 the speed ratio curve crosses that of grid size
ratio. This speed gain is associated not with the number of grid
points but with the time steps chosen by the Runge-Kutta integra-
tor, as the stable time step is proportional to �x2. In the uniform grid
case, the time step is therefore approximately constant through-
out the simulation. However, the adaptive grid solution starts with
much larger grid spacing, and develops small �x values only as
the interface steepens into its steady state form. This allows auto-
matically for much larger time steps to be taken during the initial,
low-gradient transients, resulting in an overall reduction in com-
putational time. With our current (uncompiled) implementation in
Matlab, the computational time for 5 s of simulated physical time
at the highest current density presented (∼5000 A/m2) were as fol-
lows: 1.2 min using the adaptive scheme (with 300 grid points) and
87 min using the uniform grid (with 15,709 grid points). As a com-
parison, we also used Simul 5 [32] (compiled) to solve the same case,
using the same grid resolution (again, 15,709 nodes). The compu-
tation time was 41 min, with the maximum error set to 10−5. We
note that the computation time is generally faster with a higher
allowed error (10−3 would yield acceptable results in most cases),
yet for this case 10−5 was the highest value for which the code suc-
cessfully completed 5 s of simulation time. The simulation settings
using Simul 5 were as follows: ionic strength dependency disabled,
EOF disabled, saving disabled, all refresh intervals set to 100 steps,
and time step optimization enabled with an increment of 0.25 s. The
channel length was set to 20 mm, with the injection site at 5 mm,
a peak width of 1 mm, and peak edge width of 2 mm. Both walls
were allowed to move with wall position initiation enabled, a wall
refresh rate of 30 steps, and a wall increment of 100 nodes.

4.3. Capillary zone electrophoresis (CZE) of high concentration
analytes

Another benchmark of interest originally set by Ermakov et al.
[14] and later adopted by Sounart and Baygents [17] tests the abil-
ity of the numerical algorithms in describing CZE separation of
high concentration analytes. Such conditions lead to strong cou-
pling of the electric field and analytes concentrations. As a result,
the analytes exhibit self-sharpening leading edges and tailing of
trailing edges. Sounart and Baygents discuss in detail the results
obtained under these conditions using a second order centered
scheme, a first order upwind scheme and their proposed PLPE1
scheme. They investigate grid sizes of 400 and 2000 grid points and,
for both of these, report large amplitude oscillations using the cen-
tered scheme and significant dissipation using the upwind scheme.
The PLPE1 scheme was shown to yield more accurate results, but
required a grid size of 2000 grid points for convergence (i.e., grid
independence).

We here present simulation results using the HIRAG scheme
with 400 grid points. The example is used to illustrate the behavior
of the adaptive grid as regions of high gradients migrate along the
channel. The background electrolyte was 12 mM Tris and 20 mM
acetic acid. 1 mM of aniline (pKa = 4.8, � = 32.5 × 10−9 m2 V−1 s−1)
and pyridine (pKa = 5.16, � = 30 × 10−9 m2 V−1 s−1) were introduced
as 5 mm injection zones. A constant current of 5 �A was applied
to the 50 �m diameter channel, equivalent to a current density of

2547 A/m2. Fig. 7 presents the concentration profiles of the two
analytes together with profiles of grid density. Details of the two
analyte peaks are shown as three inset plots at the top of the figure
(peaks are initially Gaussian and then triangular). The three main
plots show grid density superposed on these peak profiles. At t = 0,
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Fig. 7. Prediction showing the separation of aniline and pyridine in a 200 mm long
channel using the HIRAG scheme with 400 grid points. At the top, are details of the
analyte concentrations. High analyte concentrations (relative to background) result
in nonlinear dynamics resulting in a sharp front and an electromigration dispersion
tail. Grid density curves (thin black lines in main plots) indicate the ratio between
the initial (uniform) grid spacing and the local grid spacing. The plot demonstrates
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Fig. 8. Simulation of on-chip CZE separation of pyridine and aniline using a short
(5 cm) channel, a current density of 6111 A/m2, and an applied pressure gradient to
balance electromigration. Modeling of molecular diffusion alone results in overly
ow the adaptive grid recruits points from nearly constant (plateau) concentra-

ion regions and migrates these to regions of high gradients. A constant current
f 5 �A was applied to the 50 �m diameter channel, equivalent to a current density
f 2547 A/m2.

he grid is uniform and grid density is a horizontal line. As elec-
romigration develops, strong gradients build up and grid points
ccumulate in regions of such gradients. The highest two peaks in
rid density occur at the sharp leading edges of the analytes (see
argest two peaks at 31 and 176 s). As the analytes separate and

igrate down the channel, high grid density regions continue to
ollow these sharp fronts, maintaining accuracy and eliminating
scillations. High grid densities persist in the injection region as
xpected due to the associated initial disturbance of the field and
on densities (this is a consequence of the initial local values of the
ovin and Alberty functions in these regions [46,47]). Other channel
egions in which analytes have migrated (e.g., region near x = 80 mm
t t = 176 s) return to low grid density values, efficiently distribut-
ng computational resources. The computational time for the latter
ase, using uncompiled Matlab, was 6.5 min for 240 s of physical
ime.

.4. Taylor–Aris dispersion in CZE

We here summarize the effects of including Taylor–Aris disper-
ion on predictions of resolution, another unique feature of our
ode. Similar to the simulation in Section 4.3, we again investi-
ate the separation of pyridine and aniline in an otherwise uniform
uffer. Here the background electrolyte is 10 mM Tris and 40 mM
cetic acid (pH 4.3). 1 mM of aniline and pyridine were introduced
s a 1 mm injection zone. A constant current of 3 �A was applied
o the 25 �m diameter channel, equivalent to a current density of
110 A/m2. Unlike the separation of Section 4.3, we now assume that
n external pressure difference is applied to the channel to allow for
ore separation in a shorter physical separation distance (of 5 cm).

he latter “counterflow” technique is commonly used in off- and
n-chip electrophoretic separations [48,49]. The pressure gradient
xactly balances the electromigration of pyridine. Thus, the total
istance traveled by the analytes is proportional to their difference

n (effective) mobility, roughly 10% of the mobilities magnitude.

potentially significant drawback of such a separation scheme is

hat the pressure gradient causes increased dispersion [41] which
irectly affects peak width and resolution.

Fig. 8 compares the separation resolution obtained for this case
ith and without the use of the Taylor–Aris dispersion model (cf. Eq.
optimistic predictions of separation resolution and maximum concentration values.
Application of the Taylor–Aris model accounts for the additional expected disper-
sion caused by the counterflow. The separation was simulated using the sixth order
compact scheme with the adaptive grid using 200 grid points.

(14)). The resolution is defined here as R = 2�L/(w1 + w2), where
w1,2 are the widths (full width at half maximum) of the analytes
peaks, and �L is the distance between them. Clearly, the use of a
pressure gradient results in decreased resolution; decreasing R by
approximately a factor of 2 after 50 s of separation. The inset to the
figure shows a superposition of the analyte peak shapes at the end
of the separation (with and without Taylor dispersion). Peak values
are also decreased by a factor of 2 when dispersion is considered.
Both resolution and signal-to-noise ratio of analyte peaks are major
considerations in designing successful and optimal separations.

We verify our implementation of dispersion by comparing
with the analytical expression for the shape of the sample
zones, available for the case of linear advection-diffusion. In this
weakly non-linear electrokinetic dispersion problem, the variance
is expected to grow linearly in time so that �2 = �2

0 + 2Deff t, where
�2

0 is the initial sample zone width, Deff is the effective diffusivity,
and t is time [27]. A comparison between this dispersion theory
(solid) and computational results is presented in Fig. 9. The two
results are in good agreement, with small deviations at early times
attributed to non-linearity associated with electromigration dis-
persion.

5. Conclusions and future work

We have demonstrated the implementation, performance and
verification of a new numerical approach for the solution of
non-linear advection-diffusion equations. We use a high resolu-
tion compact scheme, together with an adaptive grid (HIRAG) to
achieve accurate solutions which are not contaminated by numer-
ical dissipation. We have shown that such accuracy is important in
challenging electrophoresis problems which require high resolu-
tion of steep concentration gradients such as isotachophoresis and
electromigraiton dispersion in capillary electrophoresis. The HIRAG
scheme also allows for the reduction in the number of grid points

required for discretization and the subsequent reduction in com-
putational time. For example, for an ITP simulation at moderately
high current density (5000 A/m2), we have demonstrated a 75-fold
reduction in computational time compared with an equivalent uni-
form grid solution. We have also demonstrated, for the first time,
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ig. 9. Verification of numerical dispersion model (circles) using an analytical
ormulation for linear dispersion growth (solid line). For each time step, the con-
entration profile of the aniline (presented in the inset) is fitted to a Gaussian and
he variance is extracted.

he incorporation of a Taylor–Aris dispersion model as an integral
art of a one-dimensional numerical solver. Such a model is use-
ul for more accurate predictions of electrophoretic assays which

ake use of pressure-driven flow, as well as for studying the effects
f unwanted pressure gradients on resolution and signal intensity.
verall, the code is intended to assist researches and practioners

n the design and optimization of electrophoretic processes, and is
articularly well suited to preconcentration and separation assays.
e offer the code as an open source so that other researchers may

e able to modify it to fit their specific needs. It is available for free
ownload at http://microfluidics.stanford.edu.

Our future work in this area will include incorporating the option
f a dissipative scheme into our code, to provide a “rough approxi-
ation” type solution to many problems. As noted in the discussion,

issipative schemes typically result in overly diffused interfaces and
re therefore less accurate in predicting properties such as resolu-
ion and sensitivity of assays. However, such schemes are very stable
nd can guarantee non-oscillatory solutions; making them very
ppropriate for quick estimates. Also, we will explore the use of our
daptive grid algorithm to mitigate the negative effects of increased
issipation. Future work will also include the incorporation of addi-
ional important physical models such as dependences of mobility
nd pKa on ionic strength and other sources of dispersion.
cknowledgements

M.B. is supported by an Office of Technology Licensing Stan-
ord Graduate Fellowship and a Fulbright Fellowship. The authors

[
[
[

[
[

. A 1216 (2009) 1008–1018

thank Robert D. Chambers for very helpful discussions and for test-
ing the code and providing constructive comments and valuable
suggestions.

References

[1] P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Anal. Chem. 74 (2002) 2637.
[2] P.S. Dittrich, K. Tachikawa, A. Manz, Anal. Chem. 78 (2006) 3887.
[3] ISI Web of Science search engine, www.isiknowledge.com, Thomson ISI,

Philadelphia, PA.
[4] B. Gas, P. Coufal, M. Jaros, J. Muzikar, I. Jelinek, J. Chromatogr., A 905 (2001) 269.
[5] D.M. Osbourn, D.J. Weiss, C.E. Lunte, Electrophoresis 21 (2000) 2768.
[6] R. Bharadwaj, J.G. Santiago, J. Fluid Mechanics 543 (2005) 57.
[7] A.M. Enlund, S. Schmidt, D. Westerlund, Electrophoresis 19 (1998) 707.
[8] B.G. Jung, Y.G. Zhu, J.G. Santiago, Anal. Chem. 79 (2007) 345.
[9] D.A. Saville, O.A. Palusinski, AIChE J. 32 (1986) 207.

[10] M. Bier, O.A. Palusinski, R.A. Mosher, D.A. Saville, Science 219 (1983) 1281.
[11] O.A. Palusinski, A. Graham, R.A. Mosher, M. Bier, D.A. Saville, AIChE J. 32 (1986)

215.
[12] R.A. Mosher, D. Dewey, W. Thormann, D.A. Saville, M. Bier, Anal. Chem. 61 (1989)

362.
[13] E.V. Dose, G.A. Guiochon, Anal. Chem. 63 (1991) 1063.
[14] S.V. Ermakov, M.S. Bello, P.G. Righetti, J. Chromatogr., A 661 (1994) 265.
[15] J. Martens, J.C. Reijenga, J. Boonkkamp, R.M.M. Mattheij, F.M. Everaerts, J. Chro-

matogr., A 772 (1997) 49.
[16] N. Ikuta, T. Hirokawa, J. Chromatogr., A 802 (1998) 49.
[17] T.L. Sounart, J.C. Baygents, J. Chromatogr., A 890 (2000) 321.
[18] J. Yu, Y. Chou, R. Yang, Electrophoresis 29 (2008) 1048.
[19] M.C. Breadmore, R.A. Mosher, W. Thormann, Anal. Chem. 78 (2006) 538.
20] R.A. Mosher, C.X. Zhang, J. Caslavska, W. Thormann, J. Chromatogr., A 716 (1995)

17.
[21] W. Thormann, C.X. Zhang, J. Caslavska, P. Gebauer, R.A. Mosher, Anal. Chem. 70

(1998) 549.
22] T.K. Khurana, J.G. Santiago, Anal. Chem. 80 (2008) 6300.
23] G. Taylor, Proc. R. Soc. Lond. Ser A-Math. Phys. Sci. 219 (1953) 186.
24] R. Aris, Proc. R. Soc. London Ser A-Math. Phys. Sci. 235 (1956) 67.
25] H.A. Stone, H. Brenner, Ind. Eng. Chem. Res. 38 (1999) 851.
26] H. Lin, B.D. Storey, J.G. Santiago, J. Fluid Mechanics 608 (2008) 43.
27] R. Bharadwaj, D.E. Huber, T. Khurana, J.G. Santiago, in: J.P. Landers

(Ed.), Handbook of Capillary and Microchip Electrophoresis and Associated
Microtechniques, CRC Press, Boca Raton, FL, 2008, p. 1085.

28] T. Hirokawa, T. Gojo, Y. Kiso, J. Chromatogr. 369 (1986) 59.
29] T. Hirokawa, M. Nishino, Y. Kiso, J. Chromatogr. 252 (1982) 49.
30] T. Hirokawa, Y. Kiso, B. Gas, I. Zuskova, J. Vacik, J. Chromatogr. 628 (1993) 283.

[31] T. Hirokawa, M. Nishino, N. Aoki, Y. Kiso, Y. Sawamoto, T. Yagi, J. Akiyama, J.
Chromatogr. 271 (1983) D1.

32] V. Hruska, M. Jaros, B. Gas, Electrophoresis 27 (2006) 984.
33] P. Gebauer, P. Bocek, J. Chromatogr. 299 (1984) 321.
34] T. Khurana, J.G. Santiago, LabChip, in press.
35] M. Stedry, M. Jaros, V. Hruska, B. Gas, Electrophoresis 25 (2004) 3071.
36] J.N. Newman, K.E. Thomas-Alyea, Electrochemical Systems, 3rd ed., Wiley-IEEE,

Hoboken, NJ, 2004 (Ch. 11).
[37] M. Bercovici, S.K. Lele, J.G. Santiago, manuscript in preparation.
38] D. Dutta, A. Ramachandran, D.T. Leighton, Microfluid. Nanofluid. 2 (2006) 275.
39] S.K. Lele, J. Comput. Phys. 103 (1992) 16.
40] W.F. Spotz, G.F. Carey, Int. J. Numerical Methods Heat Fluid Flow 8 (1998) 288.

[41] R. Bharadwaj, J.G. Santiago, B. Mohammadi, Electrophoresis 23 (2002) 2729.
42] L.F. Shampine, M.W. Reichelt, Siam J. Sci. Comput. 18 (1997) 1.
43] R. Yang, personal communication.

44] T.K. Khurana, J.G. Santiago, Anal. Chem. 80 (2008) 279.
45] P.H. Paul, M.G. Garguilo, D.J. Rakestraw, Anal. Chem. 70 (1998) 2459.
46] T.M. Jovin, Biochemistry 12 (1973) 871.

[47] R.A. Alberty, J. Am. Chem. Soc. 72 (1950) 2361.
48] C.T. Culbertson, J.W. Jorgenson, Anal. Chem. 66 (1994) 955.
49] N.J. Reinhoud, U.R. Tjaden, J. Vandergreef, J. Chromatogr. 641 (1993) 155.

http://microfluidics.stanford.edu/
http://www.isiknowledge.com/

	Open source simulation tool for electrophoretic stacking, focusing, and separation
	Introduction
	Conservation laws and governing equations
	Equilibrium reactions
	Advection-diffusion equations

	Numerical method
	Spatial discretization
	Adaptive grid
	Time discretization and simulation procedure

	Results and discussion
	Prediction of zone boundary thickness
	Computational time
	Capillary zone electrophoresis (CZE) of high concentration analytes
	Taylor-Aris dispersion in CZE

	Conclusions and future work
	Acknowledgements
	References


